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SUMMARY 
A plane surface wave train on infinitely deep water is incident upon a pair of fixed thin vertical barriers, one of which is 
in the surface, the other submerged. The relation between the input and output amplitudes is obtained via a variational 
approximation for large barrier separations. It is shown that, within this approximation, infinite spectra of totally 
reflected and totally transmitted waves exist if the barriers overlap, but for non-overlapping barriers this is not the case. 

1. Introduction 

The Schwinger variational method is a long-established technique in the theory of waveguides, 
which of recent years has also been successfully applied to water-wave problems. The power 
of the method lies in its ability to provide simple and accurate approximations to the phase and 
amplitude of scattered waves in the far-field, without the necessity of calculating the near-field 
behaviour in detail. It was first applied in the context of water-waves by Miles [-1] to the 
problem of diffraction by a finite step ; subsequent applications include the work of Mei and 
Black [2] and Black, Mei and Bray [-3] on scattering by surface and bot tom obstacles, and that 
of Evans and Morris [-4, 5] on vertical barriers. Numerical evidence presented by these authors 
and others, comparing results obtained by this method with those derived from such exact 
solutions as are available, supports the accuracy of the method. In particular, for problems 
possessing a certain type of symmetry there exist two complementary variational formulations 
which actually yield upper and lower bounds on the solution ([4, 5]). 

All the papers cited above deal with problems which can be cast in the form of a single scalar 
integral equation; it is when this equation has a symmetric and positive- or negative-definite 
kernel that the bounds mentioned above may be obtained. The underlying theory, however, 
as given for example in Stakgold [6], chapter 8, holds for a much wider class of problems 
expressible in terms of linear operators on Hilbert spaces. In the present paper we demonstrate 
how the variational method may be made to cope in practice with an unsymmetric problem 
which reduces to the solution of a pair of simultaneous integral equations over different regions, 
or equivalently, of a two-dimensional vector integral equation with unsymmetric kernel. The 
extension to higher dimensions is trivial. In such a situation, of course, though we may still 
formulate the two "complementary" variational expressions, these, as pointed out by Stakgold 
[-63, no longer furnish a maximum and a minimum principle. Instead we have simply two 
stationary principles, leading to two approximate solutions but giving no guarantee that these 
are bounds for the exact solution. 

The problem to be considered here is also of some interest from a physical standpoint. A 
plane wave train is incident upon the configuration illustrated in Figure 1 of two parallel 
fixed vertical plane barriers, one extending from the free surface to a depth a, the other from a 
depth b down to infinity. If the barrier separation is 2w, and the wave-number K, we can form 
three independent dimensionless ratios, b/a, w/a and Ka, on which the solution will depend. 
The question then arises whether there exist combinations of values of these ratios which result 
in either total transmission or total reflection of the wave energy. In his examination of the case 
of diffraction by two equal submerged barriers, Jarvis [7] found that total transmission, but 
not total reflection, could occur; for two equal surface-piercing barriers, however, Evans and 
Morris [-5] found both totally transmitted and totally reflected wavelengths. 
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Figure 1. Barrier configuration. 

A subsequent more detailed analysis of this latter problem by Newman [8] for the particular 
case when the barriers are close together revealed that the zeros of reflection and transmission 
are due to resonance effects in the oscillating column of fluid between the barriers. We might 
thus anticipate that in the present problem there would be a significant qualitative difference 
between the ranges b/a > 1 (barriers overlapping) and b/a < 1 (no overlap). It will be shown 
below that this is in fact the case, in that the overlap situation gives rise to an infinite sequence 
of zeros of both reflection and transmission, while in the non-overlap situation there is at most 
a finite set of zeros of each. 

2. Statement of the problem and outline of method 

Figure 1 illustrates the situation to be considered. The problem is strictly two-dimensional, so 
that the figure may be understood to be infinitely extended in the + z-directions. The y-axis is 
taken vertically downwards, the x-axis in the mean free surface ; thus the fluid region is y > 0. 
The lines ( -  w, a) to ( -  w, ~ )  and (w, 0) to (w, b) are occupied by thin rigid fixed barriers. The 
assumptions of the linearized, small-amplitude wave theory for an inviscid fluid in irrotational 
motion are made throughout. 

Then there exists a velocity potential �9 (x, y, t) for the motion, which we assume can be 
expressed in terms of a complex potential q~ (x, y) by 

(x, y, t) = Re [c~ (x, y) e - ia t ] .  

The function ~b then satisfies the system 

= 0 ,  y_>_ 0 ,  (1) 

y=O,  (2) 

where K = aZ/g, 

~b, V~b--*0, as y ~ ,  (3) 
and 

r ~ 0 ,  as r---,0, (4) 

where r 2 = (x_+ w) 2 + (y - 2) 2. 
This last condition expresses the requirement that there should be at worst an integrable 

singularity in the velocity at each of the barrier edges. 
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In addition, we must  prescribe the behaviour of q5 as x-~ _+ Go. Ultimately we shall be con- 
cerned with the reflection and transmission of a wave incident from x = - oo, but for the time 
being we allow incident waves from either infinity, so that 

(o~  o~l eirx+ fll e-iKx , X---~ --O0 , (5) 

~ o ; 2 e - i K x + f l 2 e i K x  , X-"*+00.  (6) 

We consider the potentials in the three regions - oo < x < - w, - w < x < w, and w < x_< 
separately, and write 

~)1 (X, y) = -(Alelr(x+W) + Bae-ir(x+W))e -Kx 

f 
~ S~ (u)(u cos u y -  K sin uy)e"(X+W) du 

+ o - u (u2+K2)  , x <  - w ,  

0 2 (x, y) : (A 2 eiK~ + B2 e -  iK~) e -  l~r 

i 
v ($21 (u)e"X+ S22(u)e-"X)(u cos u y - K  sin uy)du 

+ , - -W< X< W 
0 u (u 2 + K 2) ' 

~b3(X, Y) = (A 3 e-iK(x-w)-t-B3 eilC(x W))e-KY 

Ca~ S3(u)(u cos u y - K  sin uy)e-"(x-W)du 
+ 1o U(u2+K2)  , x > w .  

Here we follow Havelock [9] and others in writing the potential as a sum of wavelike terms 
together with an integral representing the decaying part  of the solution. Were we to consider 
finite-depth effects, the integrals would be replaced by sums over an infinite set of discrete 
eigenvalues u. It is easily seen that q~(x, y), i=  1, 2, 3, satisfy (1) to (6), with complex input 
amplitudes 

O~ 1 = - - A l e  iKw , O~ 2 = Aa eirw , (7) 

and output amplitudes 

[31 = - B 1  e-irw , [32 = B3 e - i rw .  (8) 

The object of the variational approach is to obtain the output  amplitudes from a prescribed 
input without determining the functions Si(u ) or the constants A 2, B 2. As mentioned in Section 
1 above, there are two possible formulations for the variational expression; we may take as 
unknown functions either the velocities across x = - w ,  x =  w, or the potential-differences 
(pressure) across these lines. The two methods would, for a symmetric problem, yield the 
complementary maximum and minimum principles. We give here the details only for the 
velocity form, and simply summarise the results for the pressure form, which goes through 
very similarly. 

3. Velocity formulation 

Define the intervals 91 = (0, a) and 92 = (b, o0). Also define 

( ~ x ) x = _ w =  Ul(y)  a n d ( ~ x ) x = w  = U2(y) '  

so that Ui(y) = O, y r 9i. Then 

0 x / x = -  w = G (y) 

(o~ Sl (u)(u cos u y - K  sin uy)du 
~ i K  ( A  I ~ B I ~ e ~ K~ + 

3 0 u 2 + K 2  

and 
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= u l ( y )  
x = w  

= iK(A2e-iKW_B2eit~W)e-Ky 

t '~ (Szl (u)e-"w-S22(u)e"W)(u cos u y - K  sin uy)du 
q- u 2 + K  2 , 

0 

Hence,  by an inversion theorem due to Have lock  [9], 

- A I + B  t = A2e-iKW-B2ei~Cw = - 2 i  Ut(y)e-Krdy,  (9) 
0 

and 

2 U, (y) (u cos u y -  K sin uy) dy.  (10) s l ( u )  = s 2 1 ( u ) e - " w - s 2 2 ( u ) e  w = 0 

Similarly by match ing  Oq52/Ox and O(a3/~x at x =  w with U2(y), we obta in  

B 3 - A 3  = A2eiKW-Bze-i~cw= - 2 i  U2(y)e-~Z'dy (11) 
0 , 

and 

- S 3 ( u )  = S2~(u)e~_Szz(U)e_~W = _2 U 2 ( y ) ( u c o s u y _ K s i n u y ) d y  . (12) 
7T 0 

F r o m  (9) and (11) A 2 and  B 2, and  f rom (10) and (12) $21 (u) and  $22 (u), m a y  be de termined:  

A 2 = �89 cosec 2Kw [e iKw (A 3 - B 3 ) -  e-iK~ (A 1 _ B 1)] ,  (13) 

U 2 = �89 cosec 2Kw [e-iKw (1 3 _ B3 ) _  eiKW (A 1 _ S l ) ]  ' (14) 

$21 (u) = - �89 cosech 2uw [e-"W $1 (u)+ e "~ $3 (u) ] ,  (15) 

and 
$22 (u) = - �89 cosech 2uw [e "'~ $1 (u)+ e-"W $3 (u)] .  (16) 

N o w  the pressure-difference is zero at x =  - w  for yE91, so that  ~bl=q52, giving 

e-Kr  (A 1 + B 1 + A 2 e-iKwq - B 2 e iKw) 

f~  (S~ (u ) -  Szl (u)e-U~'- S22(u)e"W)(u cos u y -  K sin uy)du 
- -  ~0 U(u2-I-K2) ' 

for y e gl. El iminat ing the Sij(u ), A2 and B 2 via (10) and (12) t_o (16), and  re-arranging,  we obta in  
the integral equat ion  

i cosec 2Kw (A 3 - B 3 - A 1 eeigw + B1 e-  2igw) e - g y  

2 [U~(,1)h(y, 17)- U2(q)g(Y, q)] dtl Y~gl  (17) 
TC 0 

where the symmetr ic  kernel functions are 

g(y, rl) = (u cos u y - K  sin uy)(u cos u ~ - K  sin ut/)cosech 2uw/u (u 2 + K2)du (18) 
0 

and 

h(y, t/) = (ucosuy-Ksinuy)(ucosu~l-Ksinuo)e2UWcosech2uw/u(u2+K2)du.  (19) 
0 

In the same way, by setting ~b 2 = q53 at x = w for y e 92, and rearranging,  we obta in  the second 
integral equa t ion  
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i cosec 2Kw (A 1 - Bl  - A3 e2iKw + B3 e-  2irw) e-Kr 

2 [Uz(rl)h(y, r l)-Ul(rl)g(y,  ~)] dr/ Y~g2 (20) 
7C 0 

As they stand, (17) and (20) cannot be combined in a single vector integral equation, since 
they are valid for different ranges of values of y. However, they can be extended so that each 
is valid in y~(0, ~) ,  as follows. 

Introduce the Heaviside unit functions/41(y) defined [oy 

{1, y < a  and H2(y ) = H ( y - b )  = { 1 '  y > b  
U l ( y ) = H ( a - y )  = 0, y > a  0, y < b .  

Then, by virtue of the vanishing of Ui(y ) outside gi, we have Ui(y)tti(y)=_ Ui(y). Thus (17) may 
be written as 

i cosec 2Kw (A 3 - B3 - A1 e21Kw + S l  e -  2iKw) e-  ~:y H 1 (y) 

2 [Ul(rl)Hl(rl)h(y, r l)-  U2(rl)H2(rl)g(y, rl)]drlHl(y),  (21) 
1~ 0 

and (20) as 

i cosec 2Kw(A  1 - S  1 - A  3 e21Kw+S3 e-2iKw)e KYH2 (y) 

2 [U2(rl)H2(rl)h(y, r l)-  U~ (rl)H 1 (rl)g(y, t/)] driHz(y), (22) 
7~ 0 

both equations now being valid for y ~ (0, ~) .  (21) and (22) may now be combined in the form 

( A D + B D ) H ( y ) e _ ~ :  ' = _2 U(rl)N(y,  rl)drl , y6(O, ~ )  , (23) 
7~ 0 

where A = ( A , ,  A3) , B=(B1,  S3), U(y)=(Ul(y) ,  U2(y)), 
1 :(0 

( h(y, tl) 
t/)) and N(y,  rl) = U(rl)P(y, rl)H(y) . 

P(y,  rl) = \ - g ( Y ,  rl) h(y, rl) ' 

We next introduce a matrix u (y) which is related to U by 

U (y) = (A D + B/3) u (y), (24) 

so that (23) becomes 

( A D + B D ) H ( y ) e _ K y =  2 ( A D + B D )  u(rl)N(y, rl)drl, y e ( O , ~ ) ,  
7~ 0 

which will follow if u(y) is a solution of 

H(y)e_~: ' = _2 u(rl)N(y, rl)drl , y~(O, Go) . (25) 
7r o 

Note that although u(y) is not uniquely defined by (24), a solution of (25), however obtained, 
will when inserted in (24) yield a function U(y) satisfying (23). 

Postmultiplying (25) by u'(y) (where ' denotes transpose) and integrating with respect to y 
over (0, ~ )  gives 

H(y)u , (y )e_rYdy  = 2 u(rl)N(y ' rl)u,(y)drldy 
0 7~ 0 0 

or, in component form, 

i • Hi(y)usi(y)e_Ky dy = _2 uik(rl)Nkm(y, rl)ujm(y)drldy . (26) 
0 TC 0 k , m = l  

To obtain the stationary form we must return to equations (9) and (11) for the input and 
output amplitudes, and observe that they may be written together as 

Journal of Engineering Math., Vol. 9 (1975) 291 300 



296 C. A. N. Morris 

l 
cO 

A - B =  2i U(y)H(y)e K'dy 
o 

: 2 tAD+B )f  u(y) H(y)e-Kydy , 

on using (24). 
We now introduce the scattering matrix* S by the relation 

A - B =  2i(AD+BD)S 

Then (27) becomes 

2i(AD+BD)S= 2i(AD+BD) f2 u(y)H(y)e-Kydy' 
which will hold for an S such that 

(27) 

(28) 

i o~ ( )  ()e-KydY S=  u y H y  
o 

i.e. 

!~ u ii(y)Hi(y)e-r'dy. (29) S j i=  

But (29) can be re-written as 

S j i = -  E U'k(rl)Nk,,(Y'~l)Ujm(y)drldY' (30) 
7~ 0 0 k , m =  l 

whence it is immediately clear, since N'(y, q)=N(t/,  y), that S is a real symmetric matrix. 
Combining (29) and (30) yields the relation 

f~ u~(y)Hj(y)e-K'dy l ;  u~(Y)H~(y)e-K'dy 
2 (31) 

Sir: _2 f ~ f 2 uik(~l)N~,,(Y'tl)uj,,(Y)dtldY 
0 0 k , m = l  

It may be shown in the usual way, again u~sing the fact that N'(y, tl) = N (t/, y), that S is stationary 
with respect to small variations of u(y) about the solution of (25). 

Once S has been determined by the use of a suitable approximation in (31), the relation 
between input and output amplitudes is very simply found. Re-arranging (28), 

B = A X ,  (32) 
where 

X = ( I -  2iDS)(I + 2iDS) -1 , 
whence B may be obtained when A is prescribed. The energy conservation law in the form 
IAI 2= [BI 2, and Kreisel's [10] symmetry relations for waves incident from either infinity, may 
be proved using (32). 

4. The choice of approximating functions 

The success of the variational method depends on the choice of functions to approximate 
uij(y ). Following Evans and Morris [4, 5] we make use of the known exact solutions for a single 
surface barrier and a single submerged barrier, due to Ursell [11] and Dean [12] respectively. 
Then we may expect ,that the approximation will be good for large barrier separations, when 
each barrier does not "feel" the presence of the other to any great extent. 

Since the functions ulj(y) are associated with the velocities Us(y ) via (24), we set ui~(y)= 
aijfi (Y), where aij are constants and fj(y) will be derived below from the appropriate exact 
solutions. Then (31) becomes 

* This is not  quite the "scattering matrix" in the sense that the term is used in electromagnetic wave theory; it is, 
however, in line with the use of the term by Miles [1]. 
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aijaj~ fg f~(y)e-K'dy f~ fj(y)e-~rdy 
Sq = 2 2 

- ~ aikaJm f f fk(q)Pkm(Y' q)f"(Y)dtldY 
k ,  m = 1 O k gm 

But, Sij being stationary, we have OS~j/~a~s = 0 (i, j, r, s = 1, 2), whence arises a set of homogeneous 
equations for the coefficients a~. Consistency conditions applied to these equations obviate the 
need to determine the a~, giving directly 

~112111 roll 12112 nl22122 
2 t11 '  $ 1 2 -  21tl ' $22 -  2111'  811 -- 

where 

li = i fi(y)e-rYdY' 111= i i f2(t')P22(Y'tl)f2(y)dqdy' 
g i  g l  g2 

J 

112= ( t' fl(rl)P12(y'rl)f2(Y)drldy' 
a g l  J~t2 

and 

122 = f01 fgl fl(rl)el'(y'~l)fl(y)drldy" 
On replacing Prs by the explicit forms of the kernels (18) and (19) we find that there are four 

basic integrals to be evaluated, namely 

fa(y)e-Xrdy, f2(y)e-~:Ydy, 
o 

f; (u cos u y - K  sin uy)dy, and f2(y)(u cos u y - K  sin uy)dy. 

The appropriate functions in the exact single barrier solutions are actually transformations of 
fl  and f2; thus, for example, if we define 

f o tpl(y ) = K f~(u)du-f~(y), 
Y 

then the corresponding form given by Dean [12] for the single submerged barrier is 0~(y)= 
(a 2 - y2)-~ (where we have set an arbitrary constant equal to one without loss of generality, 
since the expression for Sij is scale-invariant). Integration by parts now shows that 

- 01 (Y) cosh Kydy = -�89 ) f l  (Y) e- r, dy = o 

and 

fl(y)(u cos u y - K  sin uy)dy = - u  ~t I (y) cos uydy 
o 

= -�89 
with the usual Bessel function notation. 

Similarly if 02 (Y)=f2 (Y)+ K f f, f2 (u)du, then 02 has been given by Ursell [11] for a single 
surface barrier as y(y2_ b2)-~, whence 

f 2 ( y ) e - " ' d y  = 0 2 ( y ) e - " ' d y  = �89 

and 

fz(y)(u cos u y - K  sin uy)dy = u [ 02 (y ) -02 (oe ) ]  cos uydy 
b 

- ~2 (~ )  sin ub = -�89 (ub). 

Altogether, then, 11 = -�89 o (aK), 12 =�89 1 (Kb), 
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111 -- n2b4 f ~176 u J2 (bu)e 2uwu2+K 2cOsech 2uw du , 

i22---= 4-71;2 f m0 uJ2(au)e2"wu2q-K 2cOsech 2uwdu , 

tl2 - n24 b f o~176 uj ~ (au) al (bU)u2._k K 2cOsech 2uw du 

5. Pressure formulation 

If, instead of taking the velocities U~(y) as our unknown functions, we take the pressure- 
differences Vl(y)=4)2(-w, y ) -  4) l ( -  w, y) and V2(y)=O3(w, y)-q52(w , y), we obtain a 
different variational principle leading to the result B = A IT, where 

and 

Y = (2K 2 iT+ D)(2K 2 i T -  O)-a, 

nL~ L riLl L 2 L 12 L~ L22 
T l l -  , T t 2 -  , T22- 

ILl ILl ILl 

l Ko(aK) L2- nb It (bK) 
L1 - 2K ' 2K ' 

7z2b 2 ~2 
L , , -  ~ II(bK)KI(bK), L22= ~ Io(aK)Ko(aK), 

L,2 = ~- -  nz b i o~176 UJo (aU)u2 + K 2 J a  (bu) e- z.~, du 

6. The reflection and transmission coefficients 

If A=(1 ,  0), we have an incident wave from the left only, with complex amplitude - e  IKw, 
so that the complex reflection and transmission coefficients are r = B ~ e - 2iKw and t = - B 3 e -  2iKw 
respectively. 

But, in the velocity form, B = A X, from (32), whence ifA = (1, 0), then B a = X11 and B 3 = X~ z. 
Thus r = Xa i e- 2iKw and t = - Xa 2 e- 2 i K w .  Similarly from the pressure form, r = I11 ~ e -  2~K~ and 
t = --}71 2 e-2iKw. After some manipulation, these forms lead to 

- 4i (21S1 - S 12 sin 2Kw) e- 2 iKw 
t = sin 2Kw + 4S~ 2 - -  2 e- 2iKw (S 11 "~ Sz2) - 8i e -  2~K~ISI (33) 

- i ( l  + 2T12KZsin 2Kw)e -2iKw , 
= ie-2'KW+2K2 TI2+K2e-2'~(Tal + T22)- 2K 4 sin 2gwlZl '  (34) 

where I TI denotes the determinant of T. Thus It[ may be calculated; and similar formulae may 
be obtained leading to r. 

7. Discussion of the solution 

We first verify that the exact single barrier solutions are recovered if either barrier vanishes. 
If b ~ 0  for fixed a, then using the pressure form (34)we have T 12 ~ 0 ,  T 22 ~ 0, and T 1 x---'Ko (aK)/ 
rcK2Io(aK), so that It[~rclo(ag)/[n2I~(aK)+g2(ag)] ~, in agreement with Dean's  [-12] 
result for a single barrier submerged to depth a. 

If a--, oo with b fixed, then T a 1 ~ 0 ,  7"12--+0, and T22--,nI~ (bK)/K, (bK), giving Itl ~ga  (bK)/ 
[n 2121 (bK)+ K~ (bK)]~ ; this agrees with the result obtained by Ursell [11] for a single surface- 
piercing barrier of length b. Exactly the same agreement follows if the velocity form (33) is 
used. 
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The asymptotic result of Newman [13] for long obstacles with horizontal mid-sections may 
be applied to the present problem in the limit as w-+ Go. His equation (3.1) then becomes 

ItbtsI 
[tl ii_rbr~e41Kw I , as w-+oe , 

where suffices s, b denote values of the coefficients for the single surface and bot tom obstacles 
respectively. 

Using the pressure form again, we find that L t 2 -+ 0 as w ~ 0% s o that  TI ~---,K o (aK)/rcK 2 I0 (aK), 
T12-+0, and T 2 2---~7~I1 (bK)/K2 K1 (bK). However, from the results for single barriers cited above 
we may write T~ 1---'irb/K2 tb, Tz2-+irs/K z t~, from which it follows that 

- -  t b ts 
as w-+oo " (35) 

t 1 - - r s r b  e4 iKw ' 

thus Itl is identical with the value given by Newman [13]. Moreover,  in this limit the velocity 
approximation gives S,,-+~Io(aK)/4Ko(aK), $!2-+0, S2~-+nK!(bK)/4I, (bK), whence it is 
easily verified that the value (35) for t is again obtained. In other words, the two approximations 
converge in the limit w-+ o% supporting our earlier statement that the choice of trial functions 
gives better results for larger barrier separations. 

We next examine the asymptotic behaviour as K-+ o% the other parameters  remaining fixed. 
It is found that Tll=O(K-2e-Z"K),  T22=O(K-Ze261r and Ta2=O(K-3eK(b-a)), whence 
[tl = 0 (e-~bK), unless b = 0, when It[-+ 1. Thus for any finite value of b, however small, the am- 
plitude of the transmitted wave tends to zero for very short wavelengths ; if the surface barrier 
vanishes entirely, however, then short wavelengths are totally transmitted. This is physically 
reasonable, since for arbitrarily short waves only the situation actually at the surface is "felt" 
by the wave, so the difference between b = 0 and b small but finite becomes crucial. 

Finally we turn to the question of the existence of totally transmitted or reflected wavelengths. 
Again we work with the pressure approximation (34), though the velocity form yields identical 
information. Equation (34) reveals that t = 0 if 

1 +2K2 T12 sin 2Kw = 0,  
i.e. 

sin 2Kw = - 1 / 2 K  2 Tlz(a, b, K, w) , 
o r  

sin 22/~ = - a2/222 Z12 (/~, 1./, 1,'), (36) 

defining dimensionless variables 2 =  Ka, t~= w/a, v = b/a. This equation will have solutions 
only if the right-hand side (r.h.s.) has modulus less than 1 for some combination of the para- 
meter s. However, we saw above that T12 = O ( K -  3 eK<b-,7) as K-+ 0% so T 12/a 2 = O (2 -  3 eX( ,.- 1 )), 
and the r.h.s, of(36) is therefore O(2e a(1 ~)), 2-+00. 

So ifv > 1, the r.h.s, of (36) tends to zero as 2-+-+00, and there exists some value 20 such that 
when ). > 20, the r.h.s, is less than 1. Thus for any v > 1 (i.e. b > a, which corresponds to the case 
where the barriers overlap) there are an infinite number  of roots 2 (/~) of equation (36) for each 
value of/~, giving an infinite spectrum of totally reflected wavelengths. If, however, v < 1, then 
the r.h.s, of (36) becomes infinite as 2-+00, so that in this case (36) can have, at most,  a finite set 
of roots 2(/0. A similar analysis shows that  an analogous result holds for totally transmitted 
wavelengths. 

8. Conclusion 

It has been shown that according to the variational approximat ion adopted here, the occur- 
rence of total transmission or reflection depends crucially on the value of the parameter  b/a 
which measures the amount  of overlap of the barriers. Since we do not in this case have bounds 
for the exact solution, we cannot deduce that the above results will carry over identically for 
the exact values of t and r; but in view of the convergence of the two, approximations as w--+ oe 
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po in t ed  ou t  in Sect ion 7, they m a y  be r ega rded  as highly suggestive. F o r  a more  deta i led  
e x a m i n a t i o n  of  the so lu t ion  for smal le r  values  of  w, pa r t i cu la r ly  in the vicini ty  of  b/a = 1 where  
some k ind  of  s ingular  behav iou r  m a y  be an t ic ipa ted ,  an a l te rna t ive  a p p r o a c h  mus t  be used, 
pe rhaps  a long  s imilar  l ines to  tha t  of  N e w m a n  [8] .  I t  is h o p e d  to pursue  this  ques t ion  in the 
future. 

The present  m e t h o d  m a y  easi ly be ex tended  to dea l  wi th  obl ique ly  incident  waves ; the  t e rm u 
in the d e n o m i n a t o r  and  the exponen t ia l  of  the  in tegra ted  t e rm in qSi(x, y) is r ep laced  by (/A2 "~ 
K 2 sin 2 ~)~, where c~ is the angle  between the wave-f ronts  and  the barr iers .  This  results  in a 
modi f ied  form of  the matr ices  S, T, while the qua l i ta t ive  p roper t i e s  d iscussed in Sect ion 7 
remain  unal tered .  
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